

ERDC Spill Pattern Updates
 Bonneville, The Dalles and Lower Monumental
 Week of September 17th, 2017

OBJECTIVES: Court Order to spill to Gas Cap. Need to define what that looks like for each project and identify constraints – if any.

ASSUMPTIONS: Voluntary spill patterns over the past few years have provided acceptable fish passage conditions. Each model will be observed at voluntary spill pattern levels closest to the desired change. Differences from the “acceptable” will be noted.

Bonneville:

Fish Passage Concerns/Issues

- Will the existing spill pattern provide good juvenile egress at all tailwaters? (Note gas cap will involve higher spill volumes at lower tailwaters.)
- Are shore line velocities too high for good adult passage?
- Is flow off the 14 foot or 7 foot deflectors a hydraulic/egress issue for the specific TW?

Integrity of the Structures (spillway, channel slopes, fish ladder, etc)

- Are velocities too high on the shoreline and will cause erosion (potentially affecting the Bradford/Cascades Is fish ladders)?
- Will rocks move into the stilling basin at lower Qs and lower tailwaters, creating a scouring/structure integrity concern?

The Dalles:

Fish Passage Concerns/Issues

- Starting at 64 Kcfs spill (4 foot gate opening in bays 1 through 8) are conditions on the spillway shelf acceptable for fish passage (adults and juveniles)?
- Egress conditions of spill into the main river?
- Evaluate high flow conditions that correspond to less than 40% spill?

Structural integrity of the 8/9 Spillwall

- Will modified spill patterns cause increased erosion of the shelf adjacent to the d/s portion of the 8/9 spillwall.

Changes that would affect traffic entering or exiting the Navigation Lock

Lower Monumental:

Fish Passage Concerns/Issues

- Determine if uniform gas cap spill has capability to egress

Integrity of the Structures

- Determine if uniform gas cap spill has structural impacts

Changes to entering or exiting the Navigation Lock

- Determine if uniform gas cap spill will cause navigation concerns

Sunday September 17th – Travel Day

Friday September 22nd – Travel Day

See attached Spreadsheet for Agenda.

Attendees:

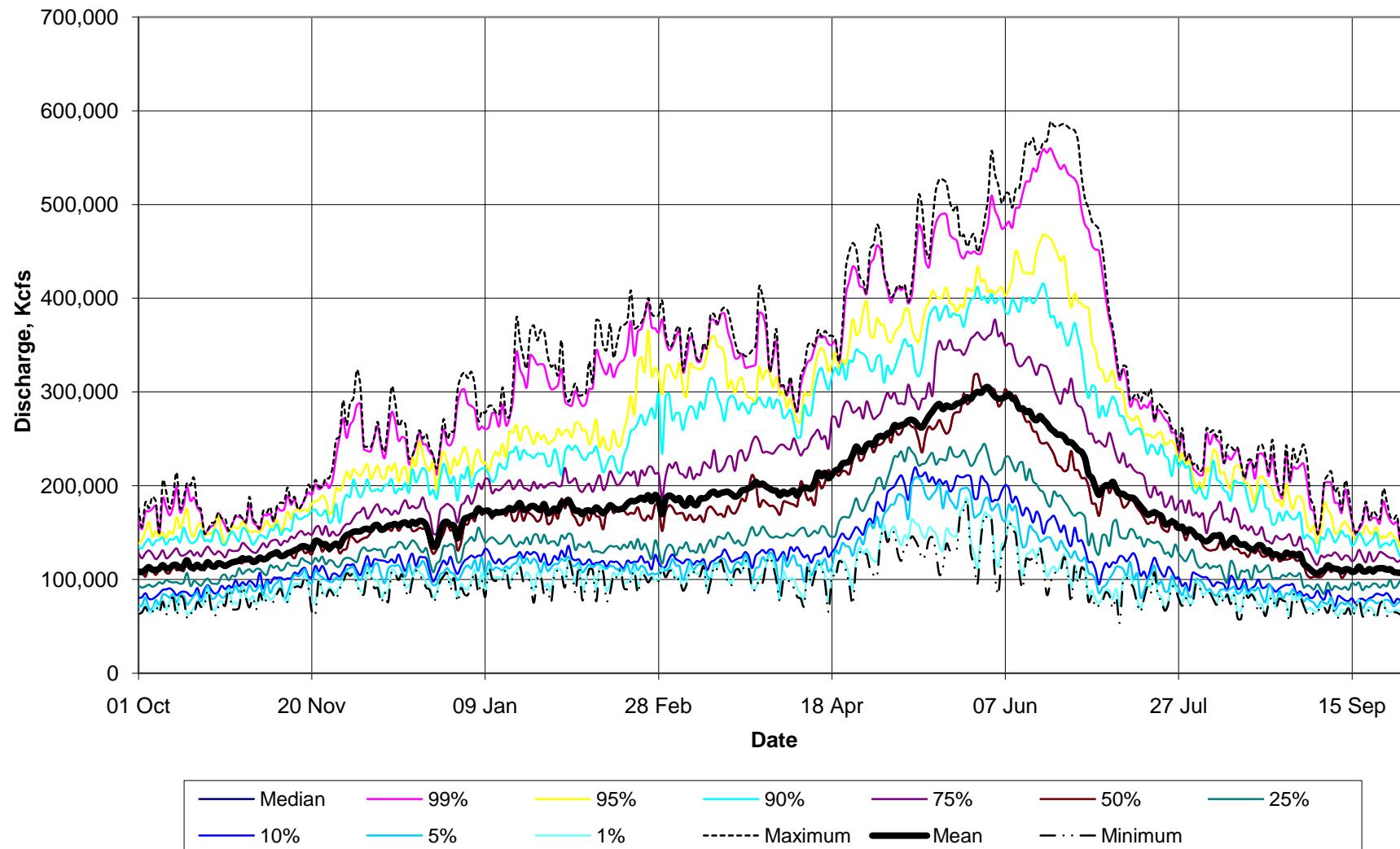
NWP:

Laurie Ebner
Amy Lynn
Sean Askelson
Steve Schlenker
Aaron Litzenberg
Sean Tackley
Jon Rerecich
Ida Royer
Erin Kovalchuk

NWW:

Ryan Laughery
Steve Juhnke
Eric Hockersmith
Sean Milligan
Mark Morris

NWD:


Covered under a separate list

Agencies:

NPT - Jay Hesse
ODFW - Erick Van Dyke
WDFW - Michael Garrity
CRITFC - Tom Lorz
NOAA - Trevor Conder, Gary Fredricks, Blane Bellerud, and Ed Meyer
BPA – No Participants
PNWA/tow boaters – Fred Harding (Shaver Transportation Company)

Date	Time	Activity	Bonneville	The Dalles	Lower Monumental
Sunday 17th September				Travel	
Monday 18th September	8:00 AM	Check in at PAO			
	8:30 AM	Meet at Bonneville	100 Kcfs Spill/18 ft TW		
		Verify Metrics			
	9:00 AM	Bonneville 100 Kcfs	100 Kcfs Spill/21 ft TW		
			100 Kcfs Spill/18 ft TW		
			100 Kcfs Spill/15 ft TW		
			100 Kcfs Spill/12.8 ft TW		
	9:30 AM	TDA Bathymetry		Look at TDA De-watered	
	10:00 AM	Bonneville 125 Kcfs	125 Kcfs Spill/21 ft TW		
			125 Kcfs Spill/18 ft TW		
			125 Kcfs Spill/15 ft TW		
	11:00 AM	Bonneville 150 Kcfs	150 Kcfs Spill/29 ft TW		
			150 Kcfs Spill/26 ft TW		
			150 Kcfs Spill/24 ft TW		
			150 Kcfs Spill/21 ft TW		
			150 Kcfs Spill/18 ft TW		
	NOON			Lunch	
	1:00 PM	TDA 120 Kcfs Flow		120 Kcfs total river	
				40% spill/48 Kcfs spill	
				45% spill/54 Kcfs spill	
				50% spill/60 Kcfs spill	
				53.3% spill/64 Kcfs spill	
	3:00 PM	Bonneville 175 Kcfs	175 Kcfs Spill/29 ft TW	Tow Boaters Continue to work the TDA model.	
			175 Kcfs Spill/26 ft TW		
			175 Kcfs Spill/24 ft TW		
			175 Kcfs Spill/21 ft TW		
			175 Kcfs Spill/18 ft TW		
	4:00 PM	Bonneville 200 Kcfs	200 Kcfs Spill/29 ft TW		
			200 Kcfs Spill/26 ft TW		
			200 Kcfs Spill/24 ft TW		
			200 Kcfs Spill/21 ft TW		
			200 Kcfs Spill/18 ft TW		
Tuesday 19th September	8:00 AM	Bonneville Model Rocks	200 Kcfs Spill/24 ft TW		
			Initial Rocks in Model		
	8:30 AM	TDA 250 Kcfs Flow		250 Kcfs total river	
				40% spill/100 Kcfs spill	
				37% spill/92.5 Kcfs spill	
				50% spill/125 Kcfs spill	
	11:00 AM	Bonneville Rock Disposition	Where are the rocks?	Tow Boaters Continue to work the TDA model.	
	NOON			Lunch	
	1:00 PM	Bonneville Model Rocks	175 Kcfs Spill/24 ft TW		
			Initial Rocks in Model		
	1:30 PM	TDA 420 Kcfs Flow		420 Kcfs total river	
				40% spill/168 Kcfs spill	
				37% spill/reduction in 1 and 2 but all spill within the wall	
	3:30 PM	Bonneville Rock Disposition	Where are the rocks?	Tow Boaters Continue to work the TDA model.	
	4:30 PM			Meet at CHL Building discuss learnings and what to test Wednesday morning.	
Wednesday 20th September	8:00 AM	Bonneville Model Rocks	150 Kcfs Spill/24 ft TW		
			Initial Rocks in Model		
	8:30 AM	TDA 500 Kcfs Flow		500 Kcfs total river	
				40% spill/200 Kcfs spill	
				Tow Boaters	
	11:00 AM	Bonneville Rock Disposition	Where are the rocks?		
	Noon			Lunch	
	1:00 PM	LMA 50k Flow			50k River with Existing FOP volume and pattern
	1:45 PM				50k River with a flat pattern and assumed Gas Cap volume = min gen
	2:30 PM	LMA 75k Flow			75k River with Existing FOP volume and pattern
	3:15 PM				75k River with a flat pattern and assume Gas Cap volume = 32k
	4:00 PM				75k River with a flat pattern and assume Gas Cap volume = 36k
	4:45 PM				75k River with a flat pattern and assume Gas Cap volume = 42k
Thursday 21st September	8:00 AM	LMA 100k Flow			100k River with Existing FOP volume and pattern
	8:45 AM				100k River with a flat pattern and assume Gas Cap volume = 32k
	9:30 AM				100k River with a flat pattern and assume Gas Cap volume = 36k
	10:15 AM				100k River with a flat pattern and assume Gas Cap volume = 42k
	11:00 AM			Float/Lunch	
	11:45 AM			Float/Lunch	
	12:45 PM			Float/Lunch	
	1:30 PM	LMA 125k Flow			125k River with Existing FOP volume and pattern
	2:15 PM				125k River with a flat pattern and assume Gas Cap volume = 36k
	3:00 PM				125k River with a flat pattern and assume Gas Cap volume = 41k
	3:45 PM				125k River with a flat pattern and assume Gas Cap volume = 46k
	4:30 PM			Float	
	5:15 PM			Float	
Friday 22nd September				Travel	

Lower Columbia River
Hydrograph - 1974-2009
24 hour daily average

ERDC Spill Pattern Updates
 The Dalles Dam
 Week of July 17th, 2017

OBJECTIVES: The objective of this modeling trip to ERDC was to develop spill patterns to maximize juvenile fish egress, utilizing the existing 1:80 physical model of The Dalles Dam, while not impeding adult upstream passage. These spill patterns were to be developed looking at higher percentages of spill, up to the “gas cap” as directed by a recent Court Order, while evaluating the potential impacts for erosion, navigation, and structural integrity of Dam features.

ASSUMPTIONS: The current Spill Patterns, which reach a maximum of 40% spill, have provided acceptable downstream egress for juvenile fish and have not significantly impacted upstream passage. Current patterns have also met biological survival metrics. Model runs will be observed at voluntary spill pattern levels closest to the desired change. Differences from the “acceptable” will be noted.

Fish Passage Concerns/Issues

- Will the existing spill pattern provide good juvenile egress at all tailwaters?
 (Note gas cap will involve higher spill volumes at lower tailwaters.)
- Are shore line velocities too high for good adult passage?
- Will higher spill percentages cause juvenile fish entrainment in “North Eddy” (see pictures at end of report)

Integrity of the Structures (spillway, channel slopes, fish ladder, etc)

- Velocities high enough on the shoreline, or at the end of the spill shelf, to cause erosion?
- Will possible shelf erosion impact the structural integrity of the 8/9 spillwall?

ATTENDANCE:

CENWP –

Jon Rerecich
 Steve Schlenker
 Jeff Ament
 Aaron Litzenberg

NMFS –

Gary Fredricks

ORIGINAL AGENDA:

July 18th

8 AM	TDA folks - Check in at PAO
8:30 AM	Meet to discuss learnings from Bonneville and Strategy for TDA
9:30 AM	Go to 1:80 TDA Model Spill = 65 Kcfs (that was the number in Julies spreadsheet) Go = 5.6 feet

Total River = 165 Kcfs (39% spill)
 TW = 77 feet
 Calibrate Eyes, Develop Evaluation Metrics
 10:30 AM Reduce TW a foot at a time and eventually get to
 Spill = 65 Kcfs
 Total River = 120 Kcfs (54% spill)
 TW = 71.0 feet
 Assume an hour for each change in tailwater - will finish effort on
 Wednesday (10:30 AM 76 feet, 11:30 AM 75 feet, 12:30 Lunch, 1:30 PM
 74 feet, 2:30 PM 73 feet, 3:30 PM 72 feet)
 Be sure to take LUNCH
 4:00 PM Wrap up – Days Effort

July 19th

8:00 AM Meet on TDA Model
 Spill = 64 Kcfs
 Total River = 120 Kcfs
 TW = 71 feet

Anticipate problems at lower TWs. If things don't look good anticipate that pattern was evaluated with gates 1 and 2 closed to see if that worked.

10:00 AM TDA high river flow
 Spill = 164 Kcfs
 Total River = 410 Kcfs
 TW = 84 feet
 This is currently an acceptable condition
 10:30 AM Spill = 164 Kcfs
 Total River = 440 Kcfs
 TW = 85 feet
 Egress okay?
 11:30 AM Spill = 164 Kcfs
 Total River = 440 Kcfs
 TW = 84 feet
 Egress okay?
 12:00 PM LUNCH
 1:00 PM Spill = 164 Kcfs
 Total River = 440 Kcfs
 TW = 83 feet
 Egress okay?
 2:00 PM Spill = 164 Kcfs
 Total River = 440 Kcfs
 TW = 82 feet
 Egress okay?

July 20th

Another Test Day for TDA

Not sure but expect additional modeling is necessary

July 21st

Travel Day for TDA Folks

ACTUAL TESTS PERFORMED:

Summary Record of 1:80 Model Dye Tests

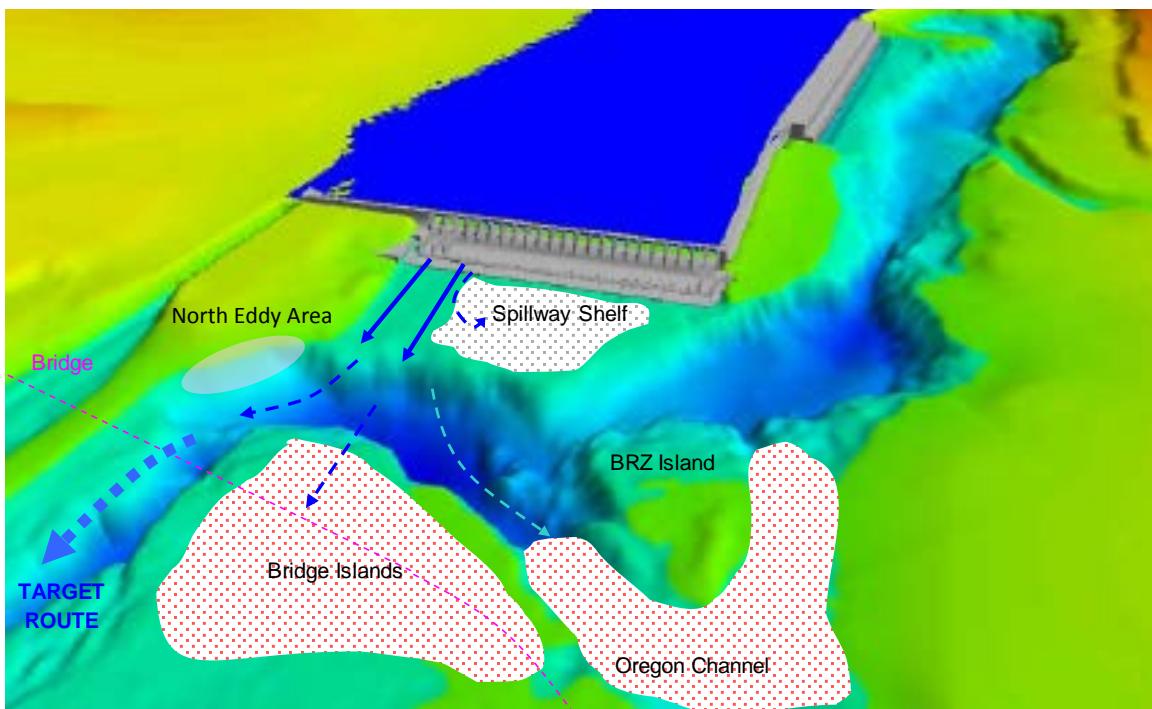
Test No.	Time	Project Operation						Spill Bay Operation					
		FLOW RATE (Kcfs)			Forebay		TW	Type of Pattern	GO		Q/bay	GO	
		PH	Spill	TDA	Bonn	Bays			(ft)	Kcfs	Bays	(ft)	
DATE: 7/17/2017 MONDAY													
1	800	165	100	65	39%	158.5	74.4	77.0	uniform	1-8	5.6	8.1	
2		165	100	65	39%	158.5	73.2	76.0	uniform	1-8	5.6	8.1	
3		165	100	65	39%	158.5	70.6	74.0	uniform	1-8	5.6	8.1	
4		120	55	65	54%	158.5	74.6	76.0	uniform	1-8	5.6	8.1	
5		120	55	65	54%	158.5	72.3	74.0	uniform	1-8	5.6	8.1	
DATE: 7/18/2017 TUESDAY													
6	800	120	55	65	54%	158.5	70.0	72.1	uniform	1-8	5.6	8.1	
7		120	55	65	54%	158.5	74.6	76.0	uniform	1-8	5.6	8.1	
8		120	72	48	40%	158.5	74.6	76.0	uniform	1-8	4.1	6.0	
9		140	75	65	46%	158.5	74.0	76.0	uniform	1-8	5.6	8.1	
10	1500	140	84	56	40%	158.5	74.0	76.0	uniform	1-8	4.8	7.0	
DATE: 7/19/2017 WEDNESDAY													
11	1000	250	150	100	40%	158.5	74.0	78.5	uniform	1-8	8.6	12.5	
12		250	81	169	68%	158.5	74.0	78.5	uniform	1-8	14.7	21.1	
13		250	81	169	68%	158.5	71.1	76.5	uniform	1-8	14.7	21.1	
14		335	171	164	49%	158.5	71.0	79.5	uniform	1-8	14.2	20.5	
15		335	171	164	49%	158.5	74.5	81.5	uniform	1-8	14.2	20.5	
16		335	211	124	37%	158.5	74.5	81.5	uniform	1-8	10.7	15.5	
17	1630	335	211	124	37%	158.5	71.0	79.5	uniform	1-8	10.7	15.5	
DATE: 7/20/2017 THURSDAY													
18	800	120	55	65	54%	158.5	70.0	72.1	uniform	1-8	5.6	8.1	
19	930	120	72	48	40%	158.5	70.0	72.1	uniform	1-8	4.1	6.0	
Testing terminated													

DISCUSSION:

Some of the attendees traveled on Sunday the 16th, so a few operational runs were looked at on Monday the 17th. These runs included low flow conditions (120-165 kcfs) with TW's in the range of 74 ft – 77 ft. Tailwater elevations were adjusted for a potential range of low to median Bonneville forebay elevations which influence the level of The Dalles tailrace for each given river discharge. This was done to examine the combination of relatively high spill to relatively low tailwater elevation. All spill patterns observed during this modeling trip were uniform patterns, and confined to the spill bays 1 through 8 (inside of the 8/9 spillwall).

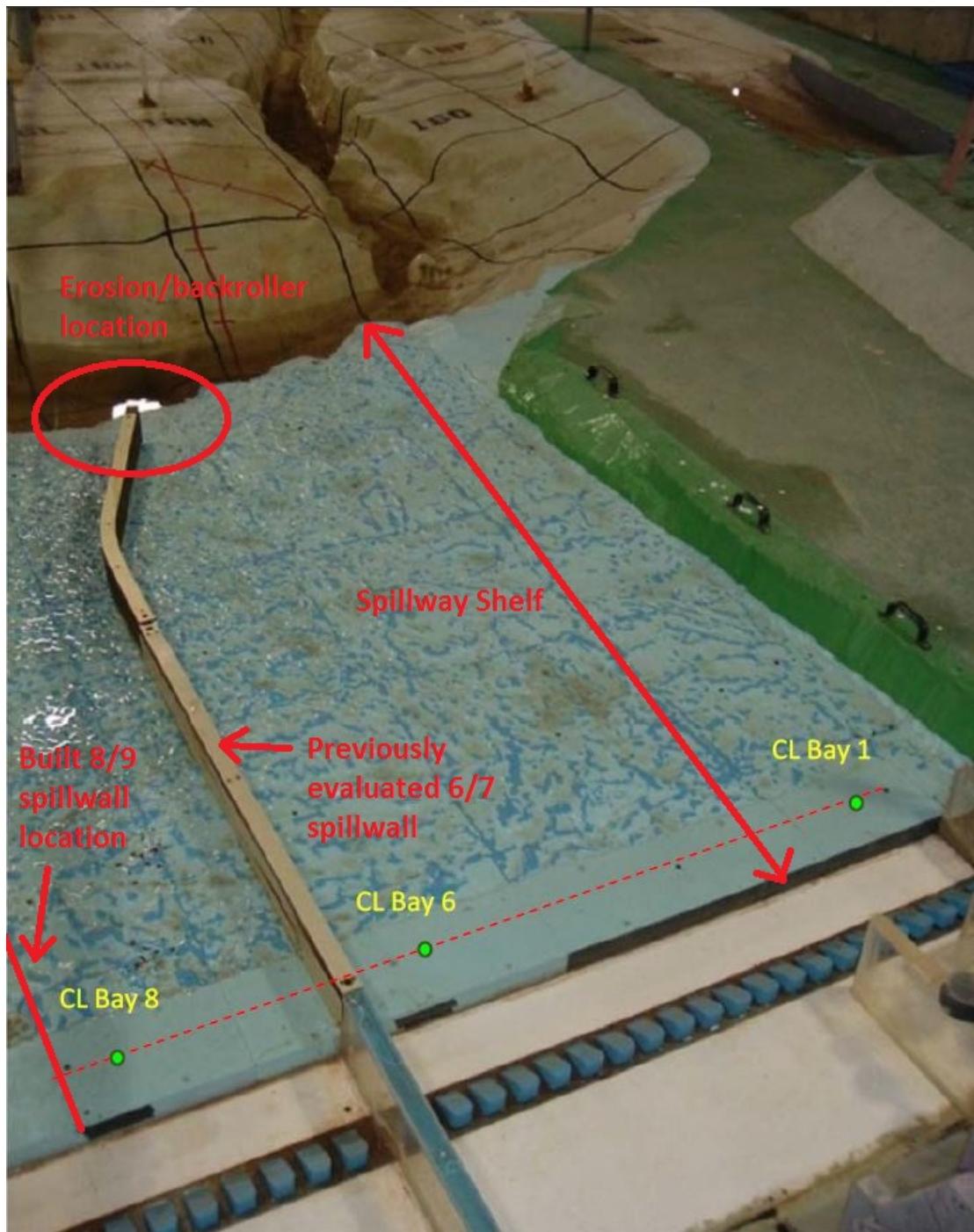
During the testing, it was discovered that there was an issue with two of the four pumps that supply water to the model. Once the sump was dewatered to look at the pump intakes, it was found that the foot valves (check valves) on two of the pumps were corroded to the point that little water could flow way into the pumps (see picture below).

ERDC has agreed to refurbish these foot valves, and have them working for the Agency trip in September. Because of the corroded foot valves, the maximum flowrate that was observed the week of July 17th was 335 kcfs, which was performed on Wednesday the 19th.


After the testing was completed on Thursday the 20th, modifications to the device used to drop dye into the model were suggested by NWP and agreed upon by ERDC for the September Agency trip. Also, ERDC was asked to take velocity measurements in the tailrace of the model before the Agency trip.

FINDINGS:

No obvious egress issues were apparent throughout the testing performed on the week of the 17th. The main issue observed was the creation of a large turbulent backroller at the edge of the tailrace shelf, towards the 8/9 spillwall during flow conditions of high spill and low tailwater (see pictures in the section below). Besides the potential issue of entraining juvenile fish in the roller and delaying downstream passage, it appeared to be more of a possible erosion issue at that point. Recommend analyzing future tailwater survey data to see if erosion in


that area is progressing up towards the dam. With the 8/9 spillwall helping to redirect the spill flow into the thalweg powerhouse flow, no unexpected egress issues, or adult upstream passage issues, were observed with the tested operations and flowrates on the week of July 17th.

With the combination of relatively high spill and low tailwater, there was somewhat more tendency for dye to plunge deeper off the west end of the spillway shelf. The deeper dye would then be conveyed by secondary currents towards the north eddy area ((See Figure 1) off the spillway shelf, but almost always moved out quickly toward the downstream thalweg to the west. No dye was seen moving into the primary areas of egress concern such as the bridge islands, Oregon channel, or spillway shelf south of wall (See Figure 1) regardless of spill percentage for the discharges that were tested.

Figure 1 - Egress Destination Zones of High Predator Risk for Juvenile Fish Discharged Through Spillway

PICTURES:

The Dalles 1:80 Model Velocity Testing Flow Rates

Test No.	Project Operation					Spill Bay Operation												
	FLOW RATE (Kcfs)			Forebay		TW	Type of Pattern	GO Q/bay			GO Q/bay			GO Q/bay				
	Total	PH	Spill	TDA (ft)	Bonn (ft)			Bays (ft)	Kcfs	Bays (ft)	Kcfs	Bays (ft)	Kcfs	Σ Spill				
1	120	72	48	40%	158.5	74.6	77.1	uniform	1-8	4.1	6.0							
2	120	72	48	40%	158.5	70.0	73.6	uniform	1-8	4.1	6.0							
3	120	55	65	54%	158.5	74.6	77.1	uniform	1-8	5.6	8.1							
4	120	55	65	54%	158.5	70.0	72.1	uniform	1-8	5.6	8.1							
5	250	150	100	40%	158.5	74.0	75.5	uniform	1-8	8.6	12.5							
6	250	150	100	40%	158.5	70.3	72.3	uniform	1-8	8.6	12.5							
7	250	86	164	66%	158.5	74.0	75.5	uniform	1-8	14.2	20.5							
8	250	86	164	66%	158.5	70.3	72.3	uniform	1-8	14.2	20.5							
9	440	276	164	37%	158.5	74.4	76.3	uniform	1-8	14.2	20.5							
10	440	276	164	37%	158.5	71.1	73.6	uniform	1-8	14.2	20.5							
11	500	267	233	47%	158.5	74.5	78.8	uniform	1-8	14.7	21.1	12, 14, 15, 17	8.0	11.7	20, 21, 22	4.0	5.9	233.3
12	500	267	233	47%	158.5	71.0	76.4	uniform	1-8	14.7	21.1	12, 14, 15, 18	8.0	11.7	20, 21, 23	4.0	5.9	233.3

The Dalles 1:80 Scale General Model
Meter Velocity Data

Test 1 $Q_r = 120$ Bon FB = 74.6
 $Q_{spill} = 48$ TDA TW= 77.1
 40%

Centerline of apron

	model	Prototype
Bay 1 CL	1.243	11.12
Bay 6 CL	1.239	11.08
Bay 8 CL	1.175	10.51

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.047	0.42
Pt 2	0.06	0.54
Pt 3	0.084	0.75
Pt 4	0.21	1.88
Pt 5	0.545	4.87

Test 2 $Q_r = 120$ Bon FB = 70.0
 $Q_{spill} = 48$ TDA TW= 73.6
 40%

Centerline of apron

	model	Prototype	% increase over median TW for Q_r
Bay 1 CL	1.336	11.95	7%
Bay 6 CL	1.273	11.39	3%
Bay 8 CL	1.172	10.48	0%

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.058	0.52	23%
Pt 2	0.125	1.12	108%
Pt 3	0.133	1.19	58%
Pt 4	0.103	0.92	-51%
Pt 5	0.747	6.68	37%

Test 3 $Q_r = 120$ Bon FB = 74.6
 $Q_{spill} = 65$ TDA TW= 77.1
 54%

Centerline of apron

	model	Prototype	% increase over 40% spill
Bay 1 CL	1.392	12.45	12%
Bay 6 CL	1.476	13.20	19%
Bay 8 CL	1.293	11.56	10%

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.03	0.27	-36%
Pt 2	0.015	0.13	-75%
Pt 3	0.022	0.20	-74%
Pt 4	0.068	0.61	-68%
Pt 5	0.5	4.47	-8%

Test 4 $Q_r = 120$ Bon FB = 70.0
 $Q_{spill} = 65$ TDA TW= 72.1
 54%

Centerline of apron

	model	Prototype	% increase over median TW for Q_r
Bay 1 CL	1.397	12.50	0%
Bay 6 CL	1.541	13.78	4%
Bay 8 CL	1.382	12.36	7%

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.04	0.36	33%
Pt 2	0.084	0.75	460%
Pt 3	0.146	1.31	564%
Pt 4	0.134	1.20	97%
Pt 5	0.767	6.86	53%

Test 5 $Q_r = 250$ Bon FB = 74.0
 $Q_{spill} = 100$ TDA TW= 75.5
 40%

Centerline of apron

	model	Prototype
Bay 1 CL	1.958	17.51
Bay 6 CL	1.03	9.21
Bay 8 CL	1.549	13.85

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.024	0.21
Pt 2	0.167	1.49
Pt 3	0.087	0.78

Test 6 $Q_r = 250$ Bon FB = 70.3
 $Q_{spill} = 100$ TDA TW= 72.3
 40%

Centerline of apron

	model	Prototype	% increase over median TW for Q_r
Bay 1 CL	1.999	17.88	2%
Bay 6 CL	1.951	17.45	89%
Bay 8 CL	1.547	13.84	0%

Screw
 at
 Divot

Nav Lock
 Grid

Pt 1	0.105	0.94	338%
Pt 2	0.161	1.44	-4%
Pt 3	0.08	0.72	-8%

Pt 4	0.304	2.72	Pt 4	0.205	1.83	-33%			
Pt 5	1.337	11.96	Pt 5	1.403	12.55	5%			
Test 7	Qr = Qspill =	250 164 66%	Bon FB = TDA TW=	74.0 75.5	Test 8	Qr = Qspill =	250 164 66%	Bon FB = TDA TW=	70.3 72.3
Centerline of apron	model	Prototype		% increase over 40% spill	Centerline of apron	model	Prototype		% increase over median TW for Qr
Bay 1 CL	1.579	14.12		-19%	Bay 1 CL	1.36	12.16		-14%
Bay 6 CL	1.051	9.40		2%	Bay 6 CL	1.004	8.98		-4%
Bay 8 CL	1.451	12.98		-6%	Bay 8 CL	1.429	12.78		-2%
Screw at Divot	2.954	26.42		33%	Screw at Divot	2.986	26.71		1%
Nav Lock Grid					Nav Lock Grid				
Pt 1	0.064	0.57		167%	Pt 1	0.201	1.80		214%
Pt 2	0.163	1.46		-2%	Pt 2	0.157	1.40		-4%
Pt 3	0.095	0.85		9%	Pt 3	0.162	1.45		71%
Pt 4	0.216	1.93		-29%	Pt 4	0.242	2.16		12%
Pt 5	1.188	10.63		-11%	Pt 5	1.317	11.78		11%
Test 9	Qr = Qspill =	440 164 37%	Bon FB = TDA TW=	74.4 76.3	Test 10	Qr = Qspill =	440 164 37%	Bon FB = TDA TW=	71.1 73.6
Centerline of apron	model	Prototype			Centerline of apron	model	Prototype		% increase over median TW for Qr
Bay 1 CL	1.514	13.54			Bay 1 CL	1.249	11.17		-18%
Bay 6 CL	1.436	12.84			Bay 6 CL	1.965	17.58		37%
Bay 8 CL	1.425	12.75			Bay 8 CL	1.73	15.47		21%
Screw at Divot	2.677	23.94			Screw at Divot	2.832	25.33		6%
Nav Lock Grid					Nav Lock Grid				
Pt 1	0.136	1.22			Pt 1	0.217	1.94		60%
Pt 2	0.181	1.62			Pt 2	0.202	1.81		12%
Pt 3	0.568	5.08			Pt 3	0.351	3.14		-38%
Pt 4	0.737	6.59			Pt 4	0.739	6.61		0%
Pt 5	1.655	14.80			Pt 5	1.753	15.68		6%

ERDC Spill Pattern Updates
Bonneville
Week of July 10th, 2017 and July 17th, 2017

OBJECTIVES: Court Order to spill to Gas Cap. Need to define what that looks like for each project and identify constraints. Note: No anticipated issues are expected except with the potential of rock movement into the stilling basin.

ASSUMPTIONS: Voluntary spill patterns over the past few years have provided acceptable fish passage conditions. The physical model will be observed at voluntary spill pattern levels closest to the desired change. Differences from the “acceptable” will be noted.

Bonneville:

Fish Passage Concerns/Issues

- Will the existing spill pattern provide good juvenile egress at all tailwaters? (Note gas cap will involve higher spill volumes at lower tailwaters.)
- Are shore line velocities too high for good adult passage?
- Is flow off the 14 foot or 7 foot deflectors an issue for the specific TW?

Integrity of the Structures (spillway, channel slopes, fish ladder, etc)

- Velocities high enough on the shoreline to cause erosion?
- Will rocks move into the stilling basin at lower Qs and lower tailwaters?

July 10th – Travel Day for NWP team members

Ida Royer
Jon Rerecich
Amy Lynn
Laurie Ebner

July 11th
8 AM Check in at PAO

Photo 1 – Bonneville 1:55 Spillway Model

8:30 AM Meet at Bonneville 1:55 Spillway Model
Develop test metrics to be used in all following tests for determining conditions that have good passage.
Metrics were developed at:
Test 1 - 100 Kcfs 21 feet TW
Test 2 - 125 Kcfs 21 feet TW
Metrics developed: DYE
*2 ounces of dye released from a measuring cup onto the ogee in order to test water movement/egress out of the stilling basin and downstream
Released in bays 3 and 4
Released in bay 9
Released in bays 15 and 16
*A wand released along the 400 foot transect starting at bay 18 and moving across to bay 8 to test water movement/egress from location downstream of stilling basin and out
Metric developed: VELOCITY
Taken at the cross section at the 500 foot transect downstream of the 17/18 pier

Metric developed during previous modeling efforts: ROCKS
Rocks were placed at 300 foot transect downstream of pier 16/17 and monitored for movement via underwater video camera and draining water following model run to identify rock locations.

NOTES: Have picked up hardware from Home Depot to figure out a way to standardize dye release locations, volumes, and concentrations in the bays. Evaluated the device later part of this trip. Going to have ERDC take velocity measurements for selected conditions prior to September Regional Visit because a tripod would provide consistent results.

Bonneville Information:

Bonneville FPP Spill Pattern – an abbreviated version of the pattern is shown in Table 1.
Tailwater (see Table 2)
Bathymetric Data (see Attached Charts)
Juvenile and Adult Fish Passage Data

Photo 2 Bonneville Spillway 1:55 Model

TEST: Spillway egress conditions using dye. Velocity also measured for each condition. Want ERDC to retake velocities measurements prior to the September Agency Trip.

Conditions tested are below – test results are shown in Table 4. Green was considered good egress, yellow was okay, mauve questionable and red – dye never got downstream. Times are recorded in Table 4.

Test 3 $Q = 100 \text{ Kcfs}$

3A – TW = 21 feet (Total River = 250 Kcfs)
 3B – TW = 18 feet (Total River = 200 Kcfs)
 3C – TW = 15 (Total River = 150 Kcfs)
 3D – TW = 12.8 (Total River = 135 Kcfs)
 3E – TW = 10 feet (Total River = 100 Kcfs) – tailgate would not allow us to get to this flow condition

Test 4 $Q = 125 \text{ Kcfs}$

4A – TW = 21 feet (Total River = 250 Kcfs)
 4B – TW = 18 feet (Total River = 200 Kcfs)
 4C – TW = 15 (Total River = 150 Kcfs)
 4D – TW = 13 (Total River = 135 Kcfs)
 4E – TW = 10 feet (Total River = 100 Kcfs) – tailgate would not allow us to get to this flow condition

Test 5 Q = 150 Kcfs

5A – TW = 21 feet (Total River = 250 Kcfs)

5B – TW = 18 feet (Total River = 200 Kcfs)

5C – TW = 16.5 (Total River = 160 Kcfs)

July 12th

5D – TW = 24 (Total River = 300 Kcfs)

5E – TW = 29 feet (Total River = 400 Kcfs)

Test 6 Q = 175 Kcfs

6A – TW = 18 feet (Total River = 200 Kcfs)

6B – TW = 21 feet (Total River = 250 Kcfs)

6C – TW = 24 (Total River = 300 Kcfs)

6D – TW = 29 (Total River = 400 Kcfs)

Test 7 Q = 200 Kcfs

6A – TW = 18 feet (Total River = 200 Kcfs)

6B – TW = 21 feet (Total River = 250 Kcfs)

6C – TW = 24 (Total River = 300 Kcfs)

6D – TW = 26 (Total River = 350 Kcfs)

6E – TW = 29 (Total River = 400 Kcfs)

6F – TW = 30.5 (Total River = 450 Kcfs)

Photos 3-5. TEST: Rock Movement Bonneville Spillway 1:55 model

A pile of rock was placed at the 300 foot mark downstream of the 15/16 pier. If they moved at a specific tailwater more rocks were added. Test were short enough to verify rocks would move onto the ramp. Longer test were done later to figure out final resting place.

An underwater camera was set about 400 to 450 feet downstream of the rocks and rock movement is monitored.

Test 8 Q = 200 Kcfs

8A – TW = 30.5 feet (Total River = 450 Kcfs)

Minimal movement

8B – TW = 29 feet (Total River = 400 Kcfs)

Movement north

8C – TW = 25.5 feet (Total River ~ 350 Kcfs)

Movement up the ramp

Test 9 Q = 175 Kcfs

9A – TW = 24 feet (Total River = 300 Kcfs)

Rocks Move into stilling basin

9B – TW = 26 feet (Total River = 350 Kcfs)

Rocks moved but not real fast

9C – TW = 29 feet (Total River ~ 400 Kcfs)

Movement initiated but very slow. Would live with it.

July 13th

Test 10 Q = 150 Kcfs

10A – TW = 29 feet (Total River = 400 Kcfs)

Some movement when there should be none

10B – TW = 26 feet (Total River = 350 Kcfs)

Rocks moved

10C – TW = 24 feet (Total River ~ 300 Kcfs)

Rolling circus of rock movement

Test 11 Q = 125 Kcfs

11A – TW = 24 feet (Total River = 300 Kcfs)

Movement when there should be none

11B – TW = 21 feet (Total River = 250 Kcfs)

Some movement east towards bay 16/17

11C – TW = 18 feet (Total River ~ 200 Kcfs)

Some movement east towards bay 16/17

11D – TW = 15 feet (Total River = 150 Kcfs)

No movement

Test 12 Q = 100 Kcfs

12A – TW = 15 feet (Total River = 150 Kcfs)
 No movement
 12B – TW = 18 feet (Total River = 200 Kcfs)
 Some movement east towards bay 16/17
 12C – TW = 21 feet (Total River ~ 250 Kcfs)
 Some movement east towards bay 16/17 and some movement
 north

Test 13 – Model runs of rock disposition over a longer run time. Rocks are placed at the 300 foot downstream of the 16/17 pier. Model is ran for 2 hours model time. Model is drained and we look at the disposition of the rocks.

13A – Spill 125 and TW of 24
 Some of the rocks moved on to the ramp but very few moved up and into the stilling basin.
 13B – Spill 150 and TW of 24
 General movement east.

July 14th

13C – Spill 175 and TW of 24
 Rocks moved to the apron. A dozen or so jumped into the stilling basin after 2 hours.

13D – Spill 175 and TW of 21
 Rocks moved into the stilling basin

Test 14 – Developing a pattern at 150 Kcfs that doesn't move rocks onto the apron, see Table 3. Results were not good. Our best hope is to only move rocks east and not north.

- 14A – Existing 150 at TW 24 feet
 75% of the rocks ended up on the apron. 25% ended just north on the 15/16 line.
- 14B Modify Pattern A – 150 Kcfs and TW 24
 More energy through center.
 Similar to 14A
- 14C Modify Pattern B – 150 Kcfs and TW 24
 Even more energy through center.
 All by 10% moved on to the apron and some distance north.
- 14D Modified Pattern C – 150 Kcfs and TW 24
 More energy on edges.
 All rocks moved.

Findings:

- a) No matter the spill volume the interaction of the deflectors, bathymetry and tailwater caused significant differences in the egress metrics. (Some TW looked better than others.)
- b) It would be beneficial for the participants on the regional trip to familiarize themselves with the JSATS (Weiland et al. 2015, draft) and PNNL hydroacoustic data from the 2000's. CH1 and STH JSATS survival (2008, 2010, 2011, 2012) was estimated by spillbay, grouped bays, narrow (10 kcfs) and wide (20 kcfs) spill discharge bins, and tailwater elevation. Median egress times (h) were estimated for the narrow and wide discharge bins. JSATS survival estimates reported by year for the spillway and each bay can be found in Appendix C. Hydroacoustic and JSATS horizontal distributions have been estimated as passage proportion by spillbay. Hydroacoustic estimates of passage efficiency and effectiveness at BON are also provided in the PNNL reports and helpful for understanding spillway and project passage trends. This information should be considered when evaluating the spill patterns.
- c) Rock Movement. For all spill volumes evaluated there was a tailwater where rocks would move east on the apron. For the 100 Kcfs and 125 Kcfs spillway flow the rocks didn't move north on the apron and into the stilling basin. Rock move into the stilling basin in the gap between bays 9 and 10. For flows of 175 Kcfs and tailwaters of 29 feet or less and 200 Kcfs and tailwaters of 31 feet or less rocks ended up in the stilling basin. At 150 Kcfs the rocks did move both east and north. Typically only a few made it into the stilling basin. If rocks end up in the stilling basin they need to be mechanically removed. The Bonneville Spillway model was previously used to investigate the likelihood of developing a flow pattern that would flush the rocks out of the stilling basin. None were identified. If 150 Kcfs spill occurs at tailwaters of 21 feet or less or 150 kcfs spill is followed by involuntary spill volumes higher than 150 Kcfs rocks will most likely be found in the stilling basin. The rocks need to be removed to limit structural damage to the concrete and to reduce the interaction of juvenile fish with the churning rocks.

During the week of July 17th a couple of more rock movement runs were made for longer run times at 150 Kcfs and 24 foot tailwater. Two different rock mixtures were used. The larger rocks a bit more angular than the typical rock in the tailrace at Bonneville and sizes range from 4 to 1 foot with an average of 3 feet or so. The smaller (pink) rocks are on average a foot in diameter and more rounded.

One run the pink rocks were placed and then capped with the larger rocks. A small portion of the pink rocks still ended up in the stilling basin. Although all rocks moved onto the apron.

The second run we only placed pink rocks. All of the pink rocks ended up on the apron with a slightly larger percentage of the rocks in the stilling basin than the previous run.

Photos at the end of the report are from the 2012 emergency contract where we mechanical removed rocks from the stilling basin prior to the 2012 spill season.

Table 1 – 2017 FPP Bonneville Spill Pattern for selective Spill Volumes

Bonneville Spillway Discharge Distribution Patterns															Gate Stops	FB=74.0 Total Spill (cfs)			
Spillway Bay Number																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
vertical gate opening (ft.)																			
3	3	3	2.5	2.5	2.5	2	2	2.5	2	2	2.5	2	2.5	2.5	3	3	3	91	100,183
3.5	3.5	3.5	3.5	3	3	3	3	3	2.5	2.5	3	3	3	3	3.5	4	4	115	124,948
4	4.5	4.5	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4.5	4.5	4	140	150,095
4	5	5	5	4.5	4.5	4.5	4	4.5	4	4.5	4.5	4.5	5	5	5	5	4	165	174,583
4	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	4	192	200,287

Table 2 – Bonneville Tailwater Data

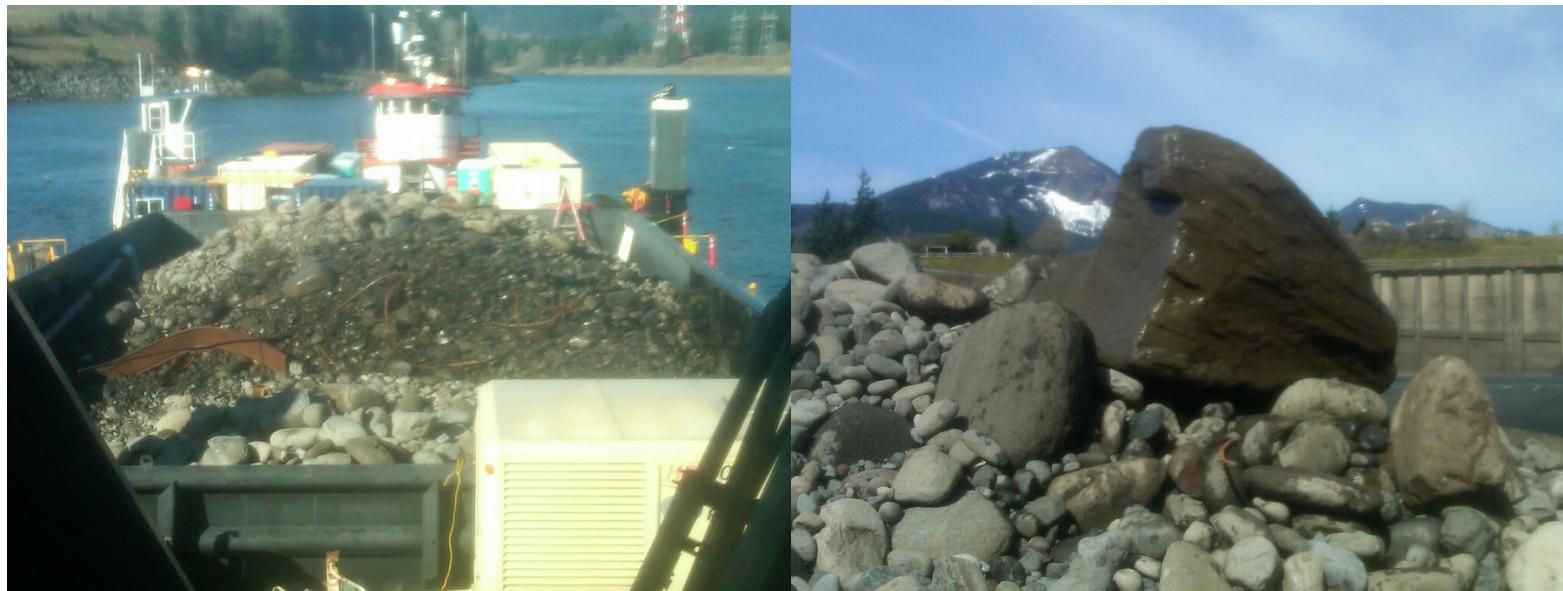
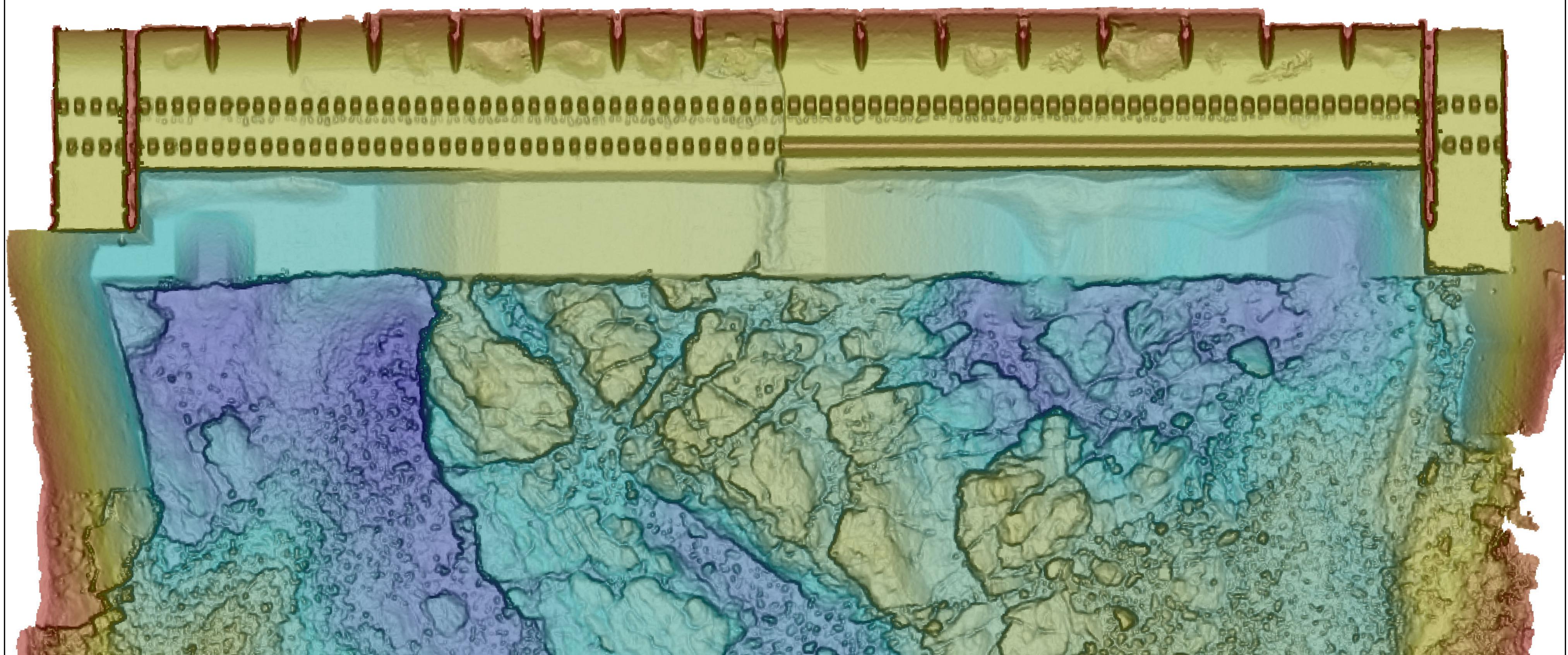
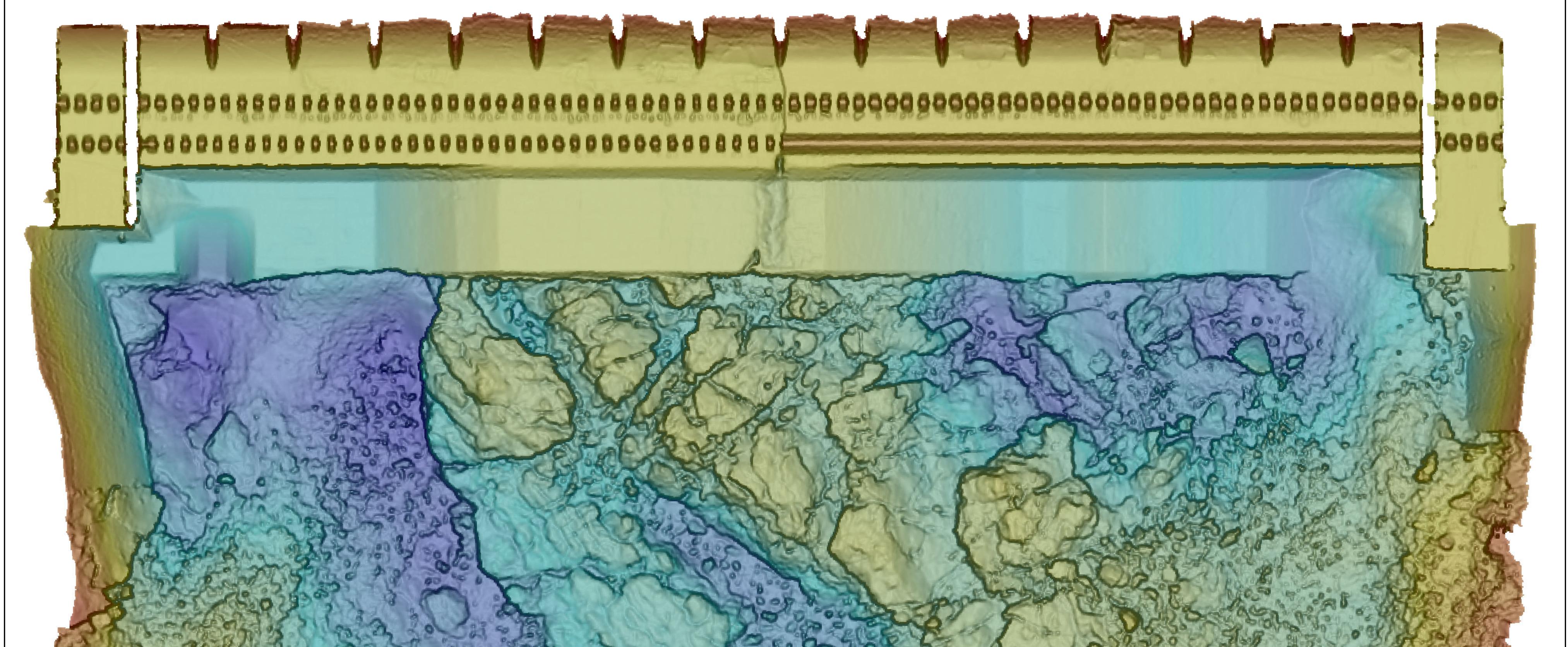

Q, cfs	TW, ft
0	0
48	5
100	10
150	15
200	18
250	21
300	24
350	26
400	29
450	31
500	33
550	35
600	36.5

Table 3 – Modified Spill Patterns for 150 Kcfs Spill Volumes

Modified spill test																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stops	Total Spill
4	4.5	4.5	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4.5	4.5	4	140	150,095
4	4	4	4	4	4	3.5	4	4	4	4	3.5	3.5	3.5	4	4	4	4	140	150,169
4	3	3	3	3.5	4	4	5	5.5	5	5	4.5	4	3.5	3	3	3	4	140	149,761
4	4	4.5	5	5	4.5	4	3	2	2	2	3	4	4.5	5	5	4.5	4	140	149,478

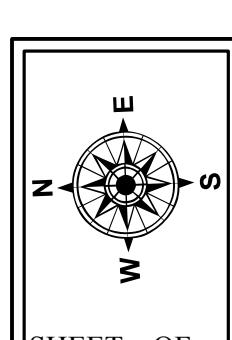
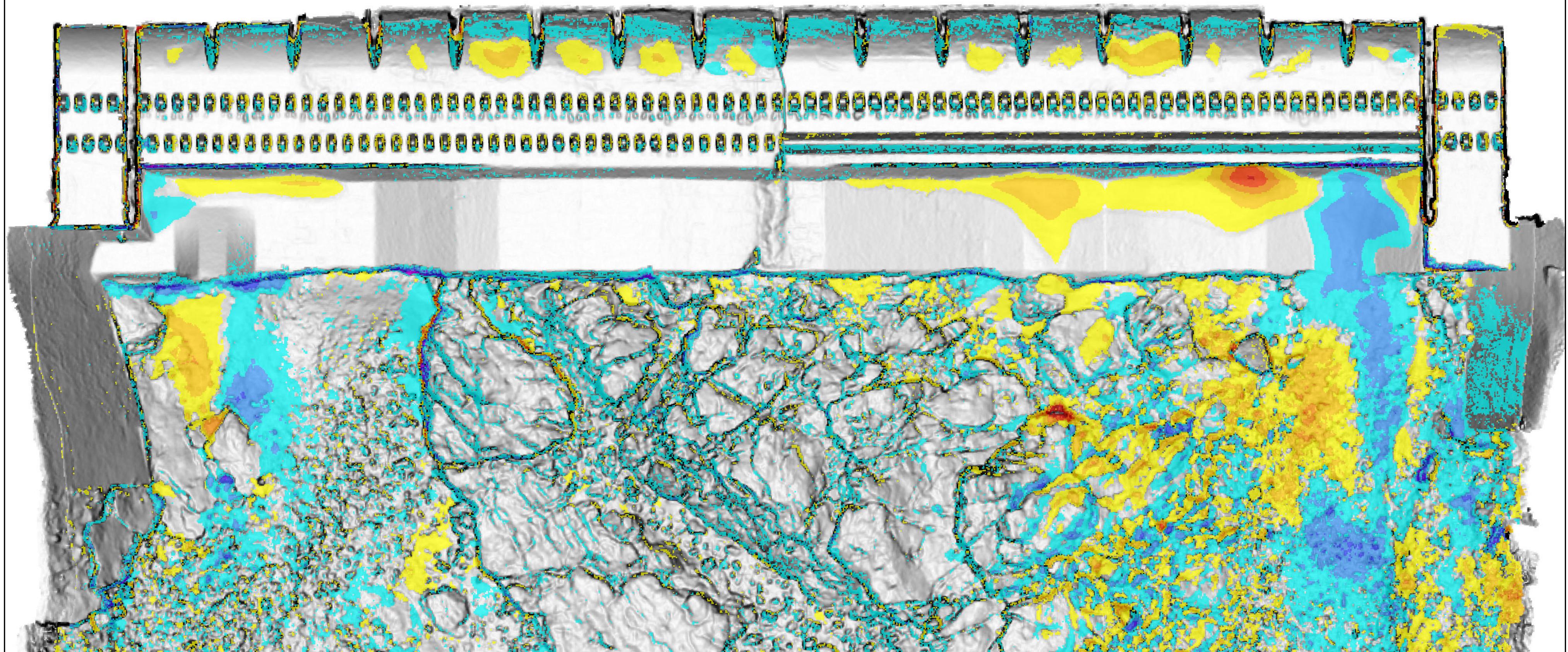
Table 4 – Dye Results


Bonneville Spillway Discharge Distribution Patterns																			Gate Stops	FB=74.0 (cfs)			
Deflector Elevation	Spillway Bay Number																						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18					
vertical gate opening (ft.)																							
Test 3																							
3A	21	250		never	27.6					17.1									23.5	never			
3B	18	200		never	never					never									15.6	16			
3C	15	150		12.4	never					never									30	13.7			
3D	12.8	135		15	19					never									never	17.5			
Test 4																							
4A	21	250		never	never					16.5									never	18.9			
4B	18	200		12.5	20.5				20.8										12.5	13.5			
4C	15	150		9.3	never				never										15.4	14.6			
4D	13	135		18.3	never				never										19.8	17.3			
Test 5																							
5A	21	250		15.1	19.2					21.2									10.9	14.8			
5B	18	200		9.2	12.4					never									14.5	8.9			
5C	16.5			12	21.7					27.2									16.9	13			
10C	5D	24	300	22.3	23.4					14.3									18.2	15.8			
10B		26	350																				
10A	5E	29	400	22.5	22.8					16.8									23.6	24.7			
Test 6																							
6A	18	200		10	12					28.2									10.2	9.2			
6B	21	250		15.4	11.6					never									10	11.5			
9A	6C	24	300	27.7	22					11.4									17.5	20.7			
9B		26	350																				
9C	6D	29	400	24.1	18.8					11.3									18.2	30			
Test 7																							
7A	18	200		9	9.8					23.4									9.9	7.8			
7B	21	250		11.5	15.8					30.3									11.2	12.2			
7C	24	300		26.1	15.4					10.8									19.7	19.2			
8C/8D	7D	26	350	25.5	18.3					9.7									21.9	19.9			
8B	7E	29	400	25.2	15					12.1									30	30			
8A	7F	30.5		22.2	17					13.6									19.1	30.8			


Photo 6 – BON spillway contract rock removal, 2012.

Bonneville Spillway																			Pier 17/18 - 500' D/S		
Discharge Distribution Patterns																					
Spillway Bay Number																					
Deflector Elevation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Gate	FB=74.0	
Deflector Elevation	7	7	7	14	14	14	14	14	14	14	14	14	14	14	14	7	7	7	Stops	Total Spill	
vertical gate opening (ft.)																			(cfs)		
Test 3	3	3	3	2.5	2.5	2.5	2	2	2.5	2	2	2.5	2	2.5	2.5	3	3	3	91	100,183	
3A	21	250		never	27.6				17.1						23.5	never				0.34	2.52
3B	18	200		never	never				never						15.6	16				0.63	4.67
3C	15	150		12.4	never				never						30	13.7				0.79	5.86
3D	12.8	135		15	19				never						never	17.5				0.30	2.22
Test 4	3.5	3.5	3.5	3.5	3	3	3	3	2.5	2.5	3	3	3	3	3.5	4	4	115	124,948		
4A	21	250		never	never				16.5						never	18.9				0.42	3.11
4B	18	200		12.5	20.5				20.8						12.5	13.5				0.76	5.64
4C	15	150		9.3	never				never						15.4	14.6				0.95	7.05
4D	13	135		18.3	never				never						19.8	17.3				0.48	3.56
Test 5	4	4.5	4.5	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4.5	4.5	4	140	150,095	
5A	21	250		15.1	19.2				21.2						10.9	14.8				0.32	2.37
5B	18	200		9.2	12.4				never						14.5	8.9				0.77	5.71
5C	16.5			12	21.7				27.2						16.9	13				1.02	7.56
5D	24	300		22.3	23.4				14.3						18.2	15.8				0.25	1.85
26	350																				
5E	29	400		22.5	22.8				16.8						23.6	24.7				0.22	1.63
Test 6	4	5	5	5	4.5	4.5	4.5	4	4.5	4	4.5	4.5	4.5	4.5	5	5	5	4	165	174,583	
6A	18	200		10	12				28.2						10.2	9.2				0.85	6.30
6B	21	250		15.4	11.6				never						10	11.5				0.61	4.52
6C	24	300		27.7	22				11.4						17.5	20.7				0.25	1.85
26	350																				
6D	29	400		24.1	18.8				11.3						18.2	30				0.29	2.15
Test 7	4	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	4	192	200,287	
7A	18	200		9	9.8				23.4						9.9	7.8				0.13	0.96
7B	21	250		11.5	15.8				30.3						11.2	12.2				0.77	5.71
7C	24	300		26.1	15.4				10.8						19.7	19.2				0.08	0.59
7D	26	350		25.5	18.3				9.7						21.9	19.9				0.19	1.41
7E	29	400		25.2	15				12.1						30	30				0.45	3.34
7F	30.5			22.2	17				13.6						19.1	30.8				0.27	2.00

SPILLWAY BATHYMETRY OCTOBER 2011

SPILLWAY BATHYMETRY OCTOBER 2013

CHANGE IN SURFACE ELEVATION (FEET) BETWEEN OCTOBER 2011 AND OCTOBER 2013
CUT<<<<<<>>>>>>FILL

15-18 12-15 9-12 6-9 3-6 0-3 0-3 3-6 6-9 9-12 12-15 15-18

U.S. ARMY ENGINEER DISTRICT
CORPS OF ENGINEERS
Portland, OR

DESIGNED BY: DATE:
DRAWN BY: CHECKED BY: SOLICITATION NO.:
SUBMITTED BY: CONTRACT NO.:
PLOT SCALE: PLOT DATE: DRAWING NUMBER:
SIZE: FILE NAME:

MARK	DESCRIPTION	DATE	APPR

US Army Corps
of Engineers®
Portland District